- Mahajan, K; Coppola, D; Rawal, B; Chen, YA; Lawrence, HR; Engelman, RW; Lawrence, NJ; Mahajan, NP Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem 287: 22112-22
- El-Gazzar, MGM; Ghorab, MM; Amin, MA; Korany, M; Khedr, MA; El-Gazzar, MG; Sakr, TM Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur J Med Chem 248: (2023)
- ChEMBL_1797586 (CHEMBL4269703) Inhibition of ATM phosphorylation at Ser1981 residue in human HT-29 cells using ionizing radiation
- ChEMBL_1797587 (CHEMBL4269704) Inhibition of DNA-PK phosphorylation at Ser2056 residue in human HT-29 cells using ionizing radiation
- ChEMBL_1618264 (CHEMBL3860433) Displacement of [125I]-CXCL12 from HA-tagged human recombinant CXCR4 expressed in HEK293 cells incubated for 1 hr by gamma-radiation counting analysis
- ChEMBL_2271780 Inhibition of ATR in human HCT-116 cells preincubated for 1 hr followed by UV radiation and measured after 1 hr by Bradford assay based immunoblotting analysis
- ChEMBL_2271781 Inhibition of ATM in human HCT-116 cells preincubated for 1 hr followed by UV radiation and measured after 1 hr by Bradford assay based immunoblotting analysis
- ChEMBL_2451239 Inhibition of human URAT1 expressed in HEK293T cells using 14C- uric acid assessed as uric acid absorption by measuring intracellular liquid radiation value by liquid scintillation counting analysis
- ChEMBL_2093866 (CHEMBL4775129) Inhibition of DNA-PK in human A549 cells assessed as reduction in radiation-induced autophosphorylation at S2056 residue preincubated for 1 hr followed by 8 Gy irradiation and measured after 1 hr by ELISA
- ChEMBL_2293100 Inhibition of P32-[alpha-GTP] cap radiolabelled RNA binding to recombinant eIF4E (unknown origin) assessed as decrease in cross linked RNA-eIF4E complex formation preincubated with UV radiation for 30 mins followed by RNase addition and measured after 30 mins by SDS-PAGE based autoradiographic analysis
- Homologous Recombination - Rad 51_Dose response Project Title: A screen for modulators of human Rad51, a key DNA repair protein Application Number: MH084119 Assay Submitter: Dr. Alex Mazin Submitter Institution: Drexel University Screening Center Name: Penn Center for Molecular Discovery (PCMD) Principal Investigator of Screening Center: Scott Diamond Ionizing radiation (IR) and inter-strand cross-linking agents (ICL) induce DNA double-stranded breaks (DSB). DSB are the most harmful type of DNA damage, which cause genome instability, cancer, genetic diseases, and premature aging. The system of homologous recombination (HR) is responsible for repair of DSB repair in all organisms including humans. Therefore, HR acts primarily as a tumor suppressor. However, HR may also protect cancer cells against IR and ICL that are commonly used in anti-cancer therapy. In addition, HR is required for cell proliferation, the function of which is essential for tumorigenesis. Consequently, we propose to specifically inhibit HR during anti-cance
- Homologous Recombination_Rad51_DNA binding assay Project Title: A screen for modulators of human Rad51, a key DNA repair protein Application Number: MH084119 Assay Submitter: Dr. Alex Mazin Submitter Institution: Drexel University Screening Center Name: Penn Center for Molecular Discovery (PCMD) Principal Investigator of Screening Center: Scott Diamond Ionizing radiation (IR) and inter-strand cross-linking agents (ICL) induce DNA double-stranded breaks (DSB). DSB are the most harmful type of DNA damage, which cause genome instability, cancer, genetic diseases, and premature aging. The system of homologous recombination (HR) is responsible for repair of DSB repair in all organisms including humans. Therefore, HR acts primarily as a tumor suppressor. However, HR may also protect cancer cells against IR and ICL that are commonly used in anti-cancer therapy. In addition, HR is required for cell proliferation, the function of which is essential for tumorigenesis. Consequently, we propose to specifically inhibit HR during anti-cance
- Homologous recombination_Rad 51_dose response_2 Project Title: A screen for modulators of human Rad51, a key DNA repair protein Application Number: MH084119 Assay Submitter: Dr. Alex Mazin Submitter Institution: Drexel University Screening Center Name: Penn Center for Molecular Discovery (PCMD) Principal Investigator of Screening Center: Scott Diamond Ionizing radiation (IR) and inter-strand cross-linking agents (ICL) induce DNA double-stranded breaks (DSB). DSB are the most harmful type of DNA damage, which cause genome instability, cancer, genetic diseases, and premature aging. The system of homologous recombination (HR) is responsible for repair of DSB repair in all organisms including humans. Therefore, HR acts primarily as a tumor suppressor. However, HR may also protect cancer cells against IR and ICL that are commonly used in anti-cancer therapy. In addition, HR is required for cell proliferation, the function of which is essential for tumorigenesis. Consequently, we propose to specifically inhibit HR during anti-cance
- Cellular Assay ATM and ATR have distinct and overlapping responses to DNA damage. They must participate together and responses must be co-ordinated. Both pathways may be activated by ionising radiation, however only ATR is activated by UV. Since UV treatment is not practical for use in a high throught-put cell assay, the UV mimetic 4NQ0 (Sigma) was chosen to activate the ATR DNA damage response pathway.
- In Vitro Evaluation of the Inhibitory Activity Against ROCK Protein Kinase Assay buffer solution: 20 mM 4-hydroxyethylpiperazine ethanesulfonic acid (pH 7.5), 10 mM magnesium chloride, 1 mM ethylene glycol-bis-(2-aminoethyl)tetraacetic acid, 0.02% polyethylene glycol monododecyl ether, 0.02 mg/mL bovine serum albumin, 0.1 mM sodium vanadate, 2 mM dithiothreitol, 1% DMSO.Experimental Operation:The freshly prepared buffer solution was added to ROCK protein kinase substrate (Long S6 Kinase substrate peptide), at a concentration of 20 μM, then 1 nM ROCK protein kinase was added thereto and stirred evenly. Echo550 was used to add a series of DMSO dilutions containing the test compound (starting from 10 μM, serially diluted by 3 times), the solution was pre-incubated at room temperature for 20 minutes, then 33P-ATP (radiation intensity 10 μCi/μL) was added to initiate the reaction, and the reaction was performed at room temperature for two hours. Then the solution was filtered by P81 ion exchange paper (Whatman #3698-915) and washed with 0.75% phosphoric acid. The radiation intensity was determined by Filter-Binding method.
- In Vitro Assay This Example provides data on two groups (Table 1 and Table 2) of structural analogues of identified 15-PGDH inhibitors. Data provided is the IC50 of each compound for inhibiting enzymatic activity of recombinant 15-PGDH in an in vitro assay. Recombinant 15-PGDH is human unless otherwise specified. 15-PGDH inhibitors described herein can provide a pharmacologic method for elevating prostaglandin levels in tissue. Known activities of prostaglandins include promoting hair growth, promoting skin pigmentation, and promoting skin darkening or the appearance of skin tanning. Known activities of prostaglandins also include ameliorating pulmonary artery hypertension. 15-PGDH inhibitors described herein may also be utilized to increase tissue stem cell numbers for purposes that would include increasing resistance to tissue damage by radiation, increasing resistance to environmental exposures to radiation, increasing stem cell numbers to increase fitness of bone marrow or other types of transplantation (through either in vivo exposure to 15-PGDH inhibitors described herein to increase stem cell numbers prior to harvest of a transplanted tissue, or through ex vivo exposure of a harvested tissue prior to transplant into a recipient host, or through treatment of the graft recipient).
- Binding Assay In order to examine binding ability of the agonists of the present invention to androgen receptors, the following in-vitro experiment was performed. African green monkey kidney fibroblast-like cell line, COS-7 (ATCC, #CRL-1651) was seeded in a 48-well plate at a density of 2.5×104 cells/well, and cultured for 24 hours. Then, a plasmid hAR-mixed medium was added thereto. The transfected cell line was treated with 1 nM of [3H]MIB and 0.1 10,000 nM of SARM derivatives, and then allowed to react for 2 hours. Thereafter, the cells were lysed and the amount of [3H]MIB bound to the intracellular androgen receptors was measured using a radiation dosimeter.
- Radiometric Assay The IC50 values for the most active hits were verified by radiometric assay as follows. A mixture of 15 µM cis-FPP, 100 nM DPPS, and inhibitors in the assay buffer (25 mM Tris-HCl, 1 mM MgCl2, 0.01% Triton-X-100) was incubated for 10 min at 25 °C. 1.8 µL of 25 µM IPP (1% 1-3H IPP, 15 µCi/mL, American Radiolabeled Chemicals, Inc.) was then added. The reaction was incubated at 37 °C for 10 min before quenching with 500 µL saturated NaCl solution. The saline solution was extracted with 500 µL butanol by vortexing, and 300 µL of the organic layer was transferred into scintillation vial for radiation readout.
- URAT1 inhibition assay The IC50 value of URAT1 inhibition for the crystalline form A of TY706 of the present invention was determined according to the following method:After trypsin digestion, both the expression cells (HEK293) that stably express the URAT1 gene and mock cells were seeded into a lysine-coated 24-well culture plate with a cell seeding density of 1×105 cells/well, and cultured in an incubator with 5% CO2 at 37° C. under saturated humidity for 2 days. The culture medium was removed from the culture plate, and the cultured cells were washed twice with DPBS, and incubated in DPBS buffer at 37° C. for 10 min 500 μL of solutions containing radio-labeled probe substrate ([8-14C] uric acid) and a series of concentrations (0.001-10 μM) of the test compounds or a blank solution were then used to replace DPBS. The concentration of [8-14C] uric acid was 30 μM, and the radiation intensity was 0.867 μCi per well. After 2 min, the reaction was terminated with DPBS buffer solution in ice bath and washed 3 times. Then, 500 μL of 0.1 mol/L NaOH was added to each well to lyse the cells, and the lysate was extracted into a scintillation vial. 3 mL of scintillation liquid (Aquasol-2) was added, and Tri-Carb 2910TR liquid scintillation counter (PerkinElmer, Waltham, USA) was used to determine the radiation intensity in the sample.
- Activity of Binding to c-MET Enzyme Assay Reagents and Materials:Reaction buffer: 20 mM Hepes (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/ml BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO and corresponding cofactor. Compound Formulation: The test compounds were dissolved in 100% DMSO to 0.33 μM and subjected to a 3-fold serial dilution using a fully automated microplate pretreatment system ECHO to obtain 10 concentrations. Reaction Operations: 1) dissolving the substrate in the fresh prepared buffer 2) adding the required cofactor to the above buffer 3) adding enzyme to the above solution, and mixing well 4) adding test sample solution and incubating at room temperature for 20 minutes 5) adding 33 P-ATP to the reaction solution, and then incubating at room temperature for 2 hours 6) detecting radiation signals 7) analyzing the results using GraphPad Prism software.
- Activity Assay Inhibitory activity-1 assay: To a solution containing 20 mM Tris-HCl (pH 7.5), 1 mM MgCl2, 100 μM EDTA, 330 μg/ml bovine serum albumin, 50 kU/ml 5′-nucleotidase, 0.1 μCi 3H-cAMP (64 nM cAMP), and PDE10A (H-PDE10A2, Human Phosphodiesterase 10A2, Scottish Biomedical), a test compound was added, and the mixture was reacted at 25° C. for 2 hours. To the reaction solution, QAE-Sephadex (17-0190-01, GE Healthcare Japan Corp.) suspended in 10 mM HEPES-Na (pH 7.0) (hereinafter, also referred to as a QAE-Sephadex suspension) was added, and the mixture was shaken for 1 minute and left standing for 5 minutes to obtain a supernatant. To the supernatant, a QAE-Sephadex suspension was further added, and the mixture was shaken for 1 minute and left standing for 5 minutes. Then, the obtained supernatant was transferred to LumaPlate (PerkinElmer, Inc.) and assayed using a radiation counter (TopCount NXT, PerkinElmer, Inc.).
- Dose Response Confirmation for Small Molecule Inhibitors of Epstein-Barr Virus NIH Molecular Libraries Screening Centers Network [MLSCN] Emory Chemical Biology Discovery Center in MLSCN Assay provider: Theodore Jardetzky; Northwestern University MLSCN Grant: 1R21NS059415-01 Epstein-Barr virus (EBV), or human herpes virus 4 (HHV-4), is a member of the larger herpesvirus family that consists of three subfamilies (##, ##, ##). Epstein-Barr virus (EBV) is an extremely prevalent human herpesvirus. Disease syndromes in humans caused by EBV reflect the cell types that EBV infects, which are primarily of lymphoid or epithelial origin. Infection of both cell types is associated with a variety of proliferative disorders and cancers. Current treatments for such malignancies are traditional chemotherapy, radiation-therapy, surgery, and if possible, restoration of immune system function. Like all herpesviruses, EBV has mechanisms to evade the immune system and maintain latency in the human host. A treatment directed specifically against EBV could significantly improve patie
- Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. #NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. #RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader.
- SGLT1/2 in-vitro assay To analyze a sodium-dependent glucose transport, cells for expressing hSGLT1 and hSGLT2 were seeded at 1×105 cells per well into a 96-well culture plate, after which resulting cells were cultured in an RPMI 1640 medium containing 10% fetal bovine serum (FBS). In 1 day after culture, the resulting cells were cultured in a pre-treatment buffer solution (10 mM HEPES, 5 mM tris, 140 mM choline chloride, 2 mM KCl, 1 mM CaCl2 and 1 mM MgCl2, pH 7.4) under 37° C./5% CO2 conditions for 10 minutes. Then, the resulting cells were cultured in a uptake buffer solution (10 mM HEPES, 5 mM tris, 140 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 1 mM AMGS pH 7.4) containing 14C-AMG (8 μM) and a compound of the present disclosure or a dimethyl sulfoxide (DMSO) vehicle under 37° C./5% CO2 conditions for 2 hours. After culture, the cells were washed twice with a washing buffer solution (a pre-treatment buffer solution containing 10 mM AMG at room temperature), after which a radiation thereof was measured by using a liquid scintillation counter. IC50 of each compound was measured according to a non-linear regression analysis by using SigmaPlot (Document Analytical Biochemistry 429: 70-75, Molecular and Cellular Biochemistry 280: 91-98, 2005).
- Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. # T2320).
- Radio-Ligand Binding Assay Compounds described herein were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. # T2320).
- Binding Assay Compounds of the present invention were tested for ability to bind to ROR in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORFigure US09796710-20171024-P00001Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORFigure US09796710-20171024-P00001LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORFigure US09796710-20171024-P00001 inverse agonist T0901317 (SigmaAldrich, Cat. # T2320).
- Binding Assay Compounds described herein were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. #NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. #RPNQ0010) were added to achieve 50 ag of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. #T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H] cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion ( 6×His disclosed as SEQ ID NO: 2). The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H] cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. # T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and 1050 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. #NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. #RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. #T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy[26,27-3H]-cholesterol (PerkinElmer, Cat. #NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy[26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. #RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. #T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- IC50 for Inhibition of the Test Compounds on URAT1 After trypsin digestion, the expression cells (HEK293) stably expressing URAT1 gene and mock cells were all inoculated into lysine-coated 24-well culture plates, with the cell inoculation density being 1×105 cells/well, and cultured in incubator at 37° C., 5% CO2 and saturated humidity for 2 days. The culture fluid in the culture plate was removed, and the cultured cells were washed twice with DPBS and subjected to warm bath in DPBS buffer solution at 37° C. for 10 min, and then a solution (500 μL) containing radioactive labeled probe substrate ([8-14C] uric acid) and 10 μM test compound (or blank) was used to substitute for DPBS, with the concentration of [8-14C] uric acid being 30 μM and the radiation intensity per well being 0.867 μCi. After 2 min, the reaction was terminated with ice-bathed DPBS buffer solution and washing was carried out for three times. Then 0.1 mol/L NaOH (500 μL) was added into each well to lyse the cells, the lysate was extracted into a scintillation vial and a scintillation fluid (Aquasol-2, 3 mL) was added, and the intensity of radioactivity in the sample was measured using a Tri-Carb 2910TR liquid scintillation analyzer (PerkinElmer, Waltham, USA). The concentration of a certain specific test compound was changed and a series of concentration points (nine concentration points were set between 0.001-10 μM) were set, to obtain the inhibition rates of the specific test compound at the above 9 concentration points. IC50 values for inhibition of the test compounds on URAT1 were calculated using the PRISM software based on the inhibition rate values of the test compound at different concentrations.
- Radio-Ligand ROR gamma Binding Assay (Assay 1) Compounds of the present invention were tested for ability to bind to ROR gamma in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant ROR gamma Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM ROR gamma LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard ROR gamma inverse agonist T0901317 (SigmaAldrich, Cat. # T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- Radio-Ligand RORγ Binding Assay Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. #NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H] cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. #RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. #T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves.
- Radio-Ligand RORgamma Binding Assay (Assay 1) Compounds described herein were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162×) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 min and incubated for 10 min at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 min and then for 10 min without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. # T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves. Inhibitory constants (Ki) were calculated using the following equation.
- Radio-Ligand RORgamma Binding Assay (Assay 1) Compounds of the present invention were tested for ability to bind to RORγ in a cell-free competition assay with commercially available radio-ligand (RL), 25-hydroxy [26,27-3H]-cholesterol (PerkinElmer, Cat. # NET674250UC), for a ligand binding site on a recombinant RORγ Ligand Binding Domain (LBD) protein expressed as a 6×His-Glutathione-S-Transferase (GST) fusion. The assay was performed in 96-well SPA plates (PerkinElmer, Cat. #1450-401) in 50 mM HEPES buffer, pH 7.4, containing 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 2 mM CHAPS, 0.5 mM β-octylglucopyranoside and 5 mM DTT. Tested compounds were dissolved in DMSO, and semi-log (3.162x) serial dilutions of the compounds were prepared in the same solvent. Two μL of the DMSO solutions were mixed with 28 μL of 8.6 nM 25-hydroxy [26,27-3H]-cholesterol and 50 μL of 24 nM RORγ LBD. The plate was shaken at 700 rpm for 20 mM and incubated for 10 mM at rt, after which 40 μL of poly-Lys YSi SPA beads (PerkinElmer, Cat. # RPNQ0010) were added to achieve 50 μg of the beads per well. The plate was incubated on an orbital shaker for 20 mM and then for 10 mM without agitation at rt. SPA signal for tritium beta radiation was registered on PerkinElmer Microbeta plate reader. Percent inhibition values were calculated based on the high signal obtained with DMSO control and the low signal observed with 10 μM standard RORγ inverse agonist T0901317 (SigmaAldrich, Cat. # T2320). The percent inhibition vs. concentration data were fit into a four-parameter model, and IC50 values were calculated from the fit as the concentrations corresponding to the inflection points on the dose-response curves. Inhibitory constants (Ki) were calculated using the following equation, where [RL] is the concentration in the assay and KD is a dissociation constant of 25-hydroxy [26,27-3H]-cholesterol:K i = IC 50 ( 1 + [ RL ] K D ) .
- In Vitro ATP-33P Casein Assay "U"-bottomed Falcon plates are prepared by placing 5 uL of solutions of the compounds according to the invention at concentrations of 10, 1, 0.1, 0.01 or 0.001 uM in different wells. The solutions of the compounds according to the invention at these various concentrations are prepared by diluting in a test buffer (Tris 50 mM pH 7.5, MgCl2 10 M, DTT 2 mM and EGTA 1 mM) a stock solution in DMSO at a concentration of 10 mM. Next, 5 uL of dephosphorylated casein are added to a final concentration of 0.2 ug/uL, 20 uL of CK1 epsilon to a final concentration of 3 ng/uL, and 20 uL of ATP-33P to a final concentration of 0.02 uCi/uL mixed with cold ATP (10 uM final approximately 2x106 CPM per well). The final total test volume per well is equal to 50 uL. The "U"-bottomed Falcon test plate mentioned above is vortexed, and then incubated at room temperature for 2 hours. After 2 hours the reaction is stopped by adding an ice-cold solution of 65 uL of cold ATP (2 mM) prepared in test buffer. 100 uL of the reaction mixture are then transferred from the "U"-bottomed Falcon plate into Millipore MAPH filter plates, preimpregnated with 25 uL of ice-cold 100% TCA. The Millipore MAPH filter plates are agitated gently and are left to stand at room temperature for at least 30 minutes to precipitate the proteins. After 30 minutes, the filter plates are sequentially washed and filtered with 2x150 uL of 20% TCA, 2x150 uL of 10% TCA and 2x150 uL of 5% TCA (6 washes in total per plate/900 uL per well). The plates are left to dry overnight at room temperature. Next, 40 uL of Microscint-20 Packard scintillation liquid are added per well and the plates are closed in a leaktight manner. The radiation emitted by each well is then measured for 2 minutes in a TopCount NXT Packard scintillation counter, in which the values of CPM/well are measured.